A Comparison of Standard Spell Checking Algorithms and a Novel Binary Neural Approach

نویسندگان

  • Victoria J. Hodge
  • Jim Austin
چکیده

In this paper we propose a simple, flexible and efficient hybrid spell checking methodology based upon phonetic matching, supervised learning and associative matching in the AURA neural system. We integrate Hamming Distance and n-gram algorithms that have high recall for typing errors and a phonetic spell-checking algorithm in a single novel architecture. Our approach is suitable for any spell checking application though aimed towards isolated word error correction particularly spell checking user queries in a search engine. We use a novel scoring scheme to integrate the retrieved words from each spelling approach and calculate an overall score for each matched word. From the overall scores we can rank the possible matches. In this paper, we evaluate our approach against several benchmark spell-checking algorithms for recall accuracy. Our proposed hybrid methodology has the highest recall rate of the techniques evaluated. The method has a high recall rate and low computational cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Binary Spell Checker

In this paper we propose a simple, flexible and efficient hybrid spell checking methodology based upon phonetic matching, supervised learning and associative matching in the AURA neural system. We evaluate our approach against several benchmark spell-checking algorithms for recall accuracy. Our proposed hybrid methodology has the joint highest top 10 recall rate of the techniques evaluated. The...

متن کامل

A Comparison Between GA and PSO Algorithms in Training ANN to Predict the Refractive Index of Binary Liquid Solutions

A total of 1099 data points consisting of alcohol-alcohol, alcohol-alkane, alkane-alkane, alcohol-amine and acid-acid binary solutions were collected from scientific literature to develop an appropriate artificial neural network (ANN) model. Temperature, molecular weight of the pure components, mole fraction of one component and the structural groups of the components were used as input paramet...

متن کامل

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

Development of a novel method in TRMC for a Binary Gas Flow Inside a Rotating Cylinder

A new approach to calculate the axially symmetric binary gas flow is proposed Dalton’s law for partial pressures contributed by each species of a binary gas mixture (argon and helium) is incorporated into numerical simulation of rarefied axially symmetric flow inside a rotating cylinder using the time relaxed Monte-Carlo (TRMC) scheme and the direct simulation Monte-Carlo (DSMC) method. The res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Knowl. Data Eng.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2003